Progenitor cell-based treatment of the pediatric myelin disorders.

نویسنده

  • Steven A Goldman
چکیده

T he childhood leukodystrophies are characterized by neonatal or childhood deficiencies in myelin production or maintenance; these may be due to hereditary defects in genes for myelin maintenance, as in Pelizaeus-Merzbacher disease, or to enzymatic deficiencies resulting in substrate misaccumulation or misprocessing, as in the lysosomal storage disorders. Regardless of their respective etiologies, these disorders are essentially all manifested by a profound deterioration in neurological function with age. A congenital deficit in forebrain myelination is also noted in children with the periventricular leukomalacia of cerebral palsy, which yields a more static morbidity. In light of the wide range of disorders to which congenital hypomyelination or postnatal demyelination may contribute, and the relative homogeneity of oligodendrocytes and their progenitors, the leukodystrophies may be especially attractive targets for cell-based therapeutic strategies. As a result, glial progenitor cells, which can give rise to new myelinogenic oligodendrocytes, have become of great interest as potential vectors for the restoration of myelin to the dysmyelinated brain and spinal cord. In addition, by distributing throughout the neuraxis after perinatal graft, and giving rise to astrocytes as well as oligodendrocytes, glial progenitor cells may be of great utility in rectifying the dysmyelination-associated enzymatic deficiencies of the lysosomal storage disorders. Arch Neurol. 2011;68(7):848-856. Published online March 14, 2011. doi:10.1001/archneurol.2011.46

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Combining Resistance Training and Endothelial Progenitor Cell Injection on the Expression of Angiogenic Factors In Diabetic Male Rats Induced By Stz

Background: Angiogenesis disorders are known mechanisms of diabetes. With the aim of reducing angiogenesis disorders, resistance training and its combination with endothelial progenitor cell injection are new strategies. Therefore, the present study was performed to determine the effect of resistance training with endothelial progenitor cell injection on the expression of angiogenic factors in ...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Simultaneous Effect of Resistance Training and Endothelial Progenitor Cell Injection on the Expression of Vegf Angiogenic Factor and Its Relationship with Insulin Resistance in Diabetic Male Rats Induced By Stz

Background: Exercise and the simultaneous use of progenitor cells is a new strategy aimed for reducing diabetic disorders. One of the known mechanisms is angiogenic disorders caused by diabetes. Therefore, the present study was performed to determine the simultaneous effect of resistance training with endothelial progenitor cell injection on the expression of angiogenic factors in the skeletal ...

متن کامل

Stem Cell Therapy in Pediatric Neurological Disorders

Pediatric neurological disorders including muscular dystrophy, cerebral palsy, and spinal cord injury are defined as a heterogenous group of diseases, of which some are known to be genetic. The two significant features represented for stem cells, leading to distinguish them from other cell types are addressed as below: they can renew themselves besides the ability to differentiate into cells wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Archives of neurology

دوره 68 7  شماره 

صفحات  -

تاریخ انتشار 2011